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Introduction 

Ecosystems are complex, involving multiple species, age groups, and genotypes, 

whose interactions through time are mediated by a variety of environmental drivers. 

While it is possible to disentangle these sources of complexity for a handful of 

experimentally tractable, well-studied systems, identifying models for less studied or 

intractable systems is a daunting task. This is particularly relevant when models are 

needed to inform conservation and management decisions, where seemingly slight 

changes in model structure can lead to qualitatively different predictions (Lee et al., 

1999; Wood and Thomas,1999).      

Alternatively, nonparametric time series methods allow us to study the dynamics of a 

system without having to specify a model.  Although this limits some of the information 

that can be extracted from a time series with a correctly specified model structure (e.g. 

estimates of relevant parameters), the insights that we can gain are robust to model 

misspecification.  

Nonlinear forecasting developed in the 1980’s and 90’s based on Takens (1981) 

theorem of time-delay embedding.  Although initially restricted to single time series from 

an autonomous, deterministic system, these methods have since been generalized to 

multiple time series (Deyle and Sugihara, 2011) from non-autonomous systems with 

deterministic (Starke, 1999) and stochastic forcing (Starke et al., 2003).   These 

methods have been of great use in physics (Buzug and Pfister, 1992), neurobiology 

(Kannathal et al., 2005), and econometrics (Mayfield and Mizrach, 1992) where long 

time series that are relatively free of observation noise are fairly common.   

Ecological applications of nonlinear forecasting were popular in the 1980’s and 90’s, 

including outstanding work by Sugihara (1994), Schaffer (1985), and Ellner and Turchin 

(1993); see Hastings et al. (1993) for a review.  In the current literature, these methods 

seem to have been supplanted by more ‘mechanistic’ state-space models (see 

Patterson et al., 2008, and references therein) or linear models with time varying 

coefficients (e.g. Ives and Dakos, 2012).  The primary objections to using time-delay 

embedding in ecology seem to be that ecological time series are noisy, not long enough 

to define an attractor and not stationary (Sugihara et al., 1990; Grenfell et al., 2001).  

Here, we address these concerns in a Bayesian nonparametric framework, using 

Gaussian process models to infer dynamics in delay coordinates.  The advantages of 

the Gaussian process are its simplistic parameterization and ability to estimate with 

precision complicated nonlinear functions (O’Hagan,1978).    



Modern statistical methods offer several advantages that are particularly relevant to 

ecology.  First, hierarchical approaches allow us to share information across data sets 

without assuming that they are identical (e.g., Shi et al., 2005; Bjornstad and Grenfell, 

2001; Royle and Dorazio, 2008; Halstead et al., 2012). Second, covariates can be 

incorporated into the dynamics in a natural and obvious way (Patterson et al., 2008).  

Third, nonstationary dynamics can be accommodated by allowing parameters to change 

with time (West and Harrison, 1997; Wikle, 2003; Ives and Dakos, 2012).  Here, we 

present a Bayesian perspective on time-delay embedding that allows us to combine the 

advantages of nonparametric time series approaches with current statistical tools.    

 

Methods and Results 

To begin, we briefly describe time delay embedding and outline the basic approach of 

nonparametric Bayesian regression via Gaussian processes (GP).  We then derive a 

hierarchical GP model that allows for dynamical variation among populations and 

extend this to the case where the dynamics are allowed to drift slowly through time.  

These methods are then applied to a sequence of simulated data sets.   

Time-delay embedding 

There is now a long history of applying Takens theorem and time delay embedding in 

the ecological literature, see, e.g., Schaffer (1985), Ellner and Turchin (1993), and 

Sugihara (1994).   However, most of the descriptions of the idea are steeped in the alien 

vernacular of topology.  From a practical point of view, the upshot of Takens theorem is 

that we are justified in modeling the dynamics of a single time series as    

              for some unknown function f and ‘embedding dimension’   which is at 

least twice the dimension of the attractor (Takens 1981).  Here, a fixed time step of   is 

assumed in keeping with the majority of ecological time series applications.  In settings 

where the data are continuously sampled in time, an appropriate time lag,  , must also 

be determined and the model is                  .  Most approaches to nonlinear 

forecasting can be thought of as ways of approximating the unknown function  .    

One particularly simple and flexible way to approximate   is using locally-weighted 

multiple linear regression, as in Sugihara’s S-Map (Sugihara 1994).  Specifically, a 

locally linear model of the form             
 
       is fit to the time series by least 

squares.   We have highlighted this method in particular because it was precisely locally 

linear models that motivated O’Hagan (1978) to introduce Gaussian processes (GP) as 

priors for flexible regression modeling from a Bayesian point of view.   Here, we use the 

tools of Bayesian GP regression to construct a hierarchical approach to nonlinear 

forecasting that allows integration of information from multiple time series and explicitly 



deals with nonstationarity.  The main text lays out the model specification and the 

simulations used to test each model.  Further details of prior specification and posterior 

inference are provided in the Appendices. 

1. Gaussian process time-delay embedding 

Assume we have a scalar time series       , and the goal is to estimate the unknown 

function   that maps the history of   into the future.  To simplify notation, we’ll use 

              } to represent the delay-coordinate vector so that we are attempting to 

fit a model of the form            .  The errors    are explicitly included here to 

account for approximation errors as well as process noise.  For convenience, we 

assume that    is at least approximately normally distributed with mean   and variance 

  .    

The shape of   is unknown and we would like to estimate it from the available data.  In a 

Bayesian context, we do so by assigning a prior to   and updating the distribution for   

given the observed data.  We are inferring a function, thus we need a prior on a space 

of functions and the natural place to look for these is the theory of stochastic process.   

The Gaussian process is particularly convenient to work with as a prior for uncertain 

regression functions (O’Hagan, 1978).  GP models have been used widely in spatial 

statistics under the guise of Kriging (Cressie, 1993).  In addition they have been used in 

population modeling to estimate the form of density dependence (Munch et al., 2005), 

test for the presence of Allee effects (Sugeno and Munch, 2013), and as a tool to 

assess model misspecification (Thorson et al., 2014). Rasmussen and Williams (2006) 

is an excellent source for additional background on modeling with Gaussian processes.   

The GP is a generalization of the multivariate normal distribution and is defined in terms 

of a mean function   and a covariance function  .  In the present application,    . The 

covariance function then controls the shape of   by specifying how strongly correlated 

realizations of   are at different locations.  In general, the stronger the correlation and 

the slower it decays with distance, the smoother realizations of   will be.    

There are several reasonable approaches to obtaining a covariance function in the 

setting of time-delay embedding.  In the present application we construct the covariance 

function as a product of correlation functions for each delay coordinate to facilitate 

inference of the embedding dimension and relevant lags.  Specifically, the covariance 

between   evaluated at points    and    is given by                       
    
   

         where   controls the variance in   at a given point and   is the squared-

exponential correlation function (see Appendix 1). The   ’s control the ‘wiggliness’ of   

in the     direction (time-lag) and the factor                 scales the delay 

coordinates to the unit interval.  The product is taken over all lags going from   to     , 



which is the maximum feasible embedding dimension.  In practice      scales roughly 

as    (Chen and Tong, 1992) and will be less than    for all but the longest ecological 

time series.   

Note that when     ,   is constant in the     direction. Thus, to facilitate identification 

of a parsimonious model, we used a prior on   that places most weight on     .  This 

approach has been taken in the machine learning literature where it is referred to as 

ARD, automatic relevance determination, (Neal, 1996) and in the multivariate 

regression literature where it is referred to as the LASSO penalty (Hans, 2009).   Here 

we use               
       which sets the expected number of local extrema to   

on the unit interval (see Appendix 1).  Automatic relevance determination typically uses 

a threshold value for    to drop the     variable from the model, but using model 

selection criteria to choose among models with a range of embedding dimensions gives 

comparable results. 

The fully specified GP model is then given by 

                             

                     

       
             (1) 

The final line represents prior specification for the variance and length scale 

parameters.  These are detailed in Appendix 1.   

Full Bayesian inference for   and the hyperparameters can be obtained via MCMC or 

other methods (Rasmussen and Williams, 2006).  However such a computationally 

intensive approach is impractical for simulation studies.  Instead, we fix the 

hyperparameters at the MAP, maximum a posteriori, estimates (Rasmussen and 

Williams, 2006).  To find the posterior mode, we use the R-prop algorithm developed for 

neural networks (Riedmiller and Braun, 1993) because it is more stable for training GP 

models than other numerical optimizers (Blum and Reidmiller, 2013; Nocedal and 

Wright, 1999).  Given the MAP estimates of the hyperparameters, the posterior for   is 

also a GP,                                where    and    are the posterior mean 

and covariance functions obtained using standard formulae for conditioning in 

multivariate normals (See Appendix 2). 

In the context of dynamical modeling, it is often the case that we want to know what the 

equilibria are and to characterize their stability.  Since   is uncertain we need to think 

instead about the distribution of plausible equilibria.  Specifically, we seek the 

probability,      , that the state    is a fixed point (i.e.,              ) and obtain this 

by evaluating the posterior density along the line where    .  Given the 



hyperparameters, the distribution for   at the point   is just a normal density, hence 

      is simply 

      
 

            
      

 

         
        

         (2) 

where   is the normalization constant.  Note that this is not a normal distribution in    

because both    and    depend on   .  This generalizes immediately to higher 

dimensions by evaluating     
        and     

       . 

To test the utility of the GP framework for identifying the embedding dimension, relevant 

lags, and plausible equilibria, we simulated data from models with 

                       where   ranged from   to   with corresponding values of 

                     and              Importantly, the relevant lags are spelled out in 

the model formulation, making the evaluation of ARD lag selection totally unambiguous.   

This is in contrast to simulating a sequence of increasingly complex multi-species 

models, which provide no a priori way to determine which lags are most relevant except 

in the simplest cases.  For each value of  , we simulated      time series of length    .  

For each simulated data set, we fit the GP model with        and used        as 

the threshold to determine if the     lag is relevant in the model.  We then computed the 

distribution of plausible equilibria and selected the posterior mode as the best estimate 

for that data set.   

Overall, the ARD approach seems to identify the relevant lags correctly a majority of the 

time (Figure 1).  The chief exception to this is when    , where lags   and   appear 

relevant with roughly equal frequency.  The MAP estimates of the plausible equilibria 

are also generally quite close to the true value obtained from the deterministic skeleton 

(Figure 1).   

 

 

2. Hierarchical modeling 

The most compelling reasons to formulate a Bayesian approach to time-delay 

embedding are the extensions that it invites.  Here we extend the GP time-delay 

embedding model to accommodate multiple short time series.  Previously, Hsieh et al. 

(2008) demonstrated that multiple short series can be concatenated to improve 

forecasts.  However, this requires that the attractor is the same for each series.  

Although we expect underlying similarities across series to be present (e.g. for the same 

species in several locations), we also expect population-specific features to exist.  In 



order to account for this, we propose a hierarchical model structure that allows the 

degree of similarity between series to be determined from the data.    

In the standard approach to hierarchical Bayesian models, information is shared across 

data sets by asserting that their parameters come from a common distribution  (e.g., Shi 

et al., 2005; Bjornstad and Grenfell, 2001; Royle and Dorazio, 2008; Halstead et al., 

Figure 1.  Automatic relevance determination and putative equilibria.  From top to 

bottom, rows present results for     to    .  For each simulation, lag   is always 

relevant.  Left: Bars indicate the frequency with which each lag coordinate was relevant 

in the fitted model (i.e. the number of simulations in which       ).  Right: For each 

simulation, the posterior for plausible equilibria was calculated and the value with the 

maximum probability was recorded.  Black lines show the distribution of these estimates 

across      simulated data sets while the red dot is the true value for a fixed point for 

the deterministic skeleton. 



2012).  For example, we might improve estimation of the mean for under sampled 

populations by treating each population-specific mean as a random deviation from the 

cross-population mean.  In the present case we do something analogous, by proposing 

that         where            and assigning   a         prior.  The covariance 

function   is defined analogously to   in (1) but with potentially different point-wise 

variance and length scale parameters, i.e.,    and   respectively.  Marginalizing over 

we obtain the total point-wise variance in f given by         .  The correlation 

between maps for two different populations at the same state is                   

                      .  If we write        and            with   between 0 

and 1, the correlation between maps reduces to  . This partitions the variance into 

within- and across- series components, such that all   s are identical when     and 

independent when    .  In this way, information is shared across data sets without 

assuming that the dynamics are identical.  The GP model for this case is given by 

                                  

                  

                  

                  (3) 

where     is the population specific process variance and   collects all of the other 

parameters.  In this model we set a uniform prior,       , on    

To demonstrate the utility of this framework we simulated data from 12 models with 

    states (see Table 1) and repeated these over   independent locations.  These 

models represent a wide range of ecological phenomena including delayed regulation 

(e.g. Turchin 1990), seasonal variation in productivity (e.g. Summers et al 2000), 

density-dependent maturation (Neubert and Caswell 2000), maternal effects (Ginzburg 

and Taneyhill, 1994), host-parasitoid interactions (Beddington et al. 1975), competition 

(e.g. Schoombie and Getz, 1998), contemporary evolution (Doebeli & deJong, 1999), 

and migration (e.g. Gerber et al., 2002).  When the models include multiple classes of 

individuals, we use time series from the same focal class for each location.  Each model 

was simulated under 3 baseline parameter sets that generate fixed point, limit cycle, 

and chaotic dynamics respectively.  Among populations, model parameters were 

allowed to vary from this baseline between 0 and 25%. In these simulations, we focused 

on short time series and evaluated the improvement in the out of sample forecast 

precision for series of   ,   , and    points.  To quantify forecast precision, we 

produced 1-step ahead forecasts for the final 5 years of data for each location and 

computed the total forecast error as        
  
  

 
      

  
     

 
   .  To do so, we 

computed the MAP estimates of   based on the first     years of data, and 



conditioned on these to produce estimates for     to  .  For comparison, we repeated 

this calculation with each series modeled independently.   

Figure 2 illustrates the improvement over independent modeling for the density 

dependent maturation model.  Overall, the hierarchical approach reduced forecast error 

in series of length    by      on average, but this drops off quickly as   increases.  

This is consistent with the observation that low dimensional dynamics (such as we 

simulated) can typically be reconstructed with       points.  Increasing process 

variance increased the fraction of simulations in which the hierarchical model 

outperformed the independent model, but diminished the average magnitude of error 

reduction. Interestingly, neither the dynamical regime nor the variance among 

populations had as strong an effect on the relative performance of the hierarchical 

model.   
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Figure 2.  An illustration of 
hierarchical GP forecasting.  
The time series are generated 
by the density-dependent 
maturation model (Table 1).  
Blue points in each panel 
represent time series for 3 
independent realizations of the 
model with 10% variation 
among parameters.  The solid 
black line (mean) and light grey 
areas (+/- 2 sd) indicate 1-step 
ahead forecast from the 
hierarchical GP model.  The 
dashed line and dark grey 
interval indicate results for 
each population modeled 
independently.
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Table 1: Simulation models used to evaluate the GP embedding approach. For each 
model one parameter is varied to produce chaotic, limit cycle, and stable dynamics. For 

all models, except the delayed logistic, the noise term    is drawn independently from 

           .  Noise in the delayed logistic model must respect the requirement that   
remain within [0,1] at all time, thus, we set                          .  In several of 

the models the noise term follows a ’ ’, which indicates elementwise multiplication of the 
noise vector with the deterministic next-state vector.  

Scenario Model Parameter Values 

Delayed 
regulation 
(Logistic) 
 

                       
  

 

    
                  

Delayed 
regulation 
(Hassel) 
 

                
      

 
        

             

Seasonal 
productivity 

        
                       

 

      ,     
           
 

Density-
dependent 
maturation 
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Host-parasitoid          
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Competition 
(Hassell-
Comins)  
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Competition 
(Shepherd) 
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Contemporary 
evolution  

   

   

   

 

   

  

             
               

             

  

           

           

           
 

    
  

               

       , 
       
                
 

   

 

  



Table 1. Continued.  Simulation models with migration.  In the 5-location migration 

models, the migration matrix,  , represents the exchange of individuals across sites.  

We used 3 different migration topologies representing a linear chain with reflective 

boundaries, a ring, and uniform dispersal.  In each case the parameter    is the fraction 

of the resident population that does not migrate and the (    ) migrants are distributed 

equally over all accessible neighbors.  The same parameters are used for all 5 sites. 

The noise term    is drawn independently from            for each site. 

Scenario Model Parameter Values 

Migration 
(2 locations, 
Ricker) 

 
  

  
 
   

  
          

          
   

   
     

   
     

      

 

        , 
         
     ,    
           
 

Migration 
(5 locations, 
Shepherd) 

 
  

 
  

 

   

        

                  
  

 
                  

  
 

 

     

 

      ,     
               
M – migration matrix, 
see caption 

 

 

Table 2. Hierarchical GP performance.  Error Red. is the proportional error reduction 

calculated as 1-mean(SShier)/mean(SSind) and Freq. Imp. is the fraction of simulations in 

which the forecast error for the hierarchical model was less than for series modeled 

independently.  These are reported for the main effects of dynamical regime, process 

variance, variation among populations, and the length of the time series.  Performance 

metrics reported for each main effect are averaged over all models and other 

parameters.   

 Dynamical Regime Process Variance 
 Chaos Limit Cycle Stable 0 0.05 0.1 

Error Red. 0.57 0.56 0.41 0.68 0.56 0.44 
Freq. Imp. 0.84 0.81 0.73 0.76 0.81 0.81 

 Variation among populations Length of series 
 0 0.1 0.25 10 15 20 

Error Red. 0.56 0.54 0.47 0.61 0.33 0.22 
Freq. Imp. 0.82 0.8 0.75 0.87 0.78 0.73 

 

 

  



3. Dynamic embedding for nonstationarity. 

It has long been recognized that for time-delay embedding to work well, long series are 

needed. Unfortunately, the longer the time period over which ecological data are 

collected, the more likely it is that some aspect of the system will change.  Changes in 

climate, species introductions, and changes in management practices are common and 

recent studies suggest that nonstationary dynamics are present in a broad range of 

systems, e.g., multidecadal shifts in the dynamics of pacific ecosystems (Hare and 

Mantua, 2000).  When using mechanistic models, a common approach to compensate 

for the apparent nonstationarity in a time series is to allow the parameters of the models 

to vary with time, either in a specified way or by letting them drift randomly (West and 

Harrison, 1997; Wikle, 2003; Ives and Dakos, 2012).  This concept is the basis of the 

Dynamic Linear Model (DLM, West and Harrison, 1997) which is the framework used to 

identify regime shifts (Carpenter, 2003).  In DLMs, the parameters of the model can 

change over time as new data is observed, allowing the model to adapt to changes in 

the underlying ecosystem dynamics.  The framework of GP time-delay embedding can 

be readily extended in a similar fashion to accommodate nonlinear changes in the 

system.  More specifically, rather than letting the parameters of the system change over 

time, we allow   to vary.  We do this by setting           , where            and 

the prior for   at time   is           .  

Rather than specify an independent covariance function for the drift variance, we set 

     where the scalar   ranges from 0 to 1 and controls the rate at which  , and 

therefore the relationship between    and    changes as time progresses. We note that 

as    ,   changes less through time and when     the model reduces to the basic 

GP time-delay embedding model (section 1).  We can gain some intuition for how   

changes through time under this prior specification by looking at the correlation between 

   and   :                                                  
    
   .  At a specific 

state  , the correlation decays with t as           becoming effectively independent 

for long t.  For a single population, this ‘dynamic embedding’ model is given by 

                               

                          

                   

                 (4) 

In this model, we assign     an exponential prior with mean        so that the expected 

time for the correlation to drop to     is    .      



To evaluate the performance of the dynamic embedding model, we simulate data from 

three of the models described in section 2: density-dependent maturation, migration (2 

location, Ricker), and maternal effects.  In this section, the goal is to determine our 

ability to forecast nonstationary dynamics; therefore, we allow the growth rate, migration 

rate and the maximum reproductive rate to vary through time in each of the models 

respectively (see Table 3).  We simulate 75 years of data from each of the models, use 

the first 50 years to determine the model parameters and compute one-step predictions 

for the last 25 years conditional on the MAP estimates.  We compare the forecast error 

of the dynamic embedding model against that of time-constant model as in section 2. 

 

 

Figure 3: Performance of the dynamic embedding model (left) relative to one without 
drift (right).  The black line (mean) and grey patch (+/- 2 sd) illustrate one-step-ahead 
predictions based on data (black dots) from three different ecological scenarios (Top 
row: Density dependent maturation, center row: Two location Ricker, bottom row: 
Maternal effects).  In each case 1 parameter of the simulation model is changing 
through time. The stationary GP compensates for this by making the noise variance 
high and the length scale short, which tends to produce imprecise forecasts.  In 
contrast, the dynamic embedding model is robust to slow changes in the underlying 
dynamics. 



Although the attractor changes shape as the driving variable changes, the standard GP 
does a fair job of forecasting, but does so by inflating the estimated process noise 
(Figure 3).  In contrast, the dynamic embedding model produces more accurate one-
step forecasts with smaller confidence bands.   

Overall, the dynamic embedding model reduces forecast error for most simulations 

(Table 3).  The magnitude of the improvement is 20-30% for most of the small-noise 

scenarios           and    ). For       , the error reductions are typically 10-20%.  

The main exception to this is for parameter set 1 of the migration model.  For this model 

the time-constant GP seems to do quite well despite the time-varying parameter.  Thus, 

adding drift actually reduces model performance. 

 

Table 3.  Dynamic embedding results for three ecological scenarios.  For each 
ecological scenario, time series were simulated with one parameter (Driver) increasing 
linearly through time over the range indicated.  This was repeated under three different 
parameter sets (see table 1 for model definitions and parameter values) and three 
different levels of process stochasticity.  Because of the driving variable, the dynamical 
regimes for the 3 parameter sets from Table 1 are no longer strictly chaotic, limit cycle, 
and stable.  For each combination, we report the proportional reduction in 1-step 
forecast error for the dynamic embedding model compared to one without temporal drift. 
The numbers in parentheses represent the percentage of simulations that the dynamic 
embedding model outperformed the independent model. 

Model Name Driver Set                       

Density dependent 
maturation 
 

                  1 0.2898 (100%) 0.3748 (100%) 0.2312 (100%) 
 2 0.3365 (100%) 0.3343 (100%) 0.2337 (100%) 
 3 0.2064 (100%) 0.2086 (100%) 0.1922 (100%) 

Migration 
(2 locations, 
Ricker) 

                1 -0.0252 (31.4%) 0.0422 (82.9%) 0.0293 (71.4%) 

 2 0.0687 (80.0%) 0.0371 (74.3%) 0.0227 (74.3%) 

 3 0.1223 (91.4%) 0.1332 (97.1%) 0.0351 (80.0%) 
Maternal Effects              1 0.4471 (100%) 0.3256 (100%) 0.1228 (97.1%) 

 2 0.4283 (100%) 0.3205 (100%) 0.1271 (100%) 
 3 0.4381 (100%) 0.3204 (100%) 0.1080 (88.6%) 

 

Discussion 

Here we have developed Bayesian approaches to time delay embedding for use in 

ecological forecasting.  The Bayesian paradigm offers a number of advantages over 

algorithmic approaches including automatic quantification of uncertainty, incorporation 

of prior information, and detection of relevant lags.  However, the biggest advantage is 

likely to be the ease with which the models are generalized.  The hierarchical and 

dynamic embedding models we presented were developed to cope with the short, 

noisy, and nonstationary time series encountered in ecology.  As shown in Appendix 3, 



combining these models is trivial, though we do not present simulation results along 

these lines. 

The simulations presented here are promising and demonstrate good performance over 

a broad range of scenarios.  But they are certainly not exhaustive.  Our primary intent is 

to demonstrate proof of concept.  Having done so, it would be worthwhile to determine 

the limits under which the models fail.  For instance, although the hierarchical model 

reduces error when the simulation parameters differ by up to 25%, there must surely be 

a limiting difference beyond which the model is not useful.  Similarly, we expect the 

dynamic embedding model to be useless when the driving variable changes sufficiently 

fast. 

Combining short time series through hierarchical GP models increases forecast 

precision across a wide range of ecological scenarios.  In cases where more than two or 

three series are available, it may be worthwhile to generalize the hierarchical structure 

to allow different degrees of dependence across pairs.  Rather than have the pointwise 

correlation be constant for all pairs,  , we could instead model pairwise correlations 

separately, e.g.,                          for the     and     populations.  This approach 

offers a means of identifying clusters of series with similar dynamics.  If the dynamics 

are expected to vary along spatial gradients, a natural choice would be to use a spatial 

covariance function to constrain the correlations across embeddings.   

We have focused primarily on the situation where multiple series are available for a 

single species.  For any given location it is often the case that data are available for 

more than one species.  In this case, the most direct thing to do is to fit GP models for 

each species using the data for all species as predictors, i.e. we could write     

                 .  This could be done easily using the methods we have described 

with little modification.  However, it is worth noting that the multivariate embedding 

theorem (Deyle and Sugihara, 2011) tells us that we are justified in using any 

combination of   lags from all interacting species.  This suggests that we might improve 

forecast precision using model averaging to combine multiple embeddings.   

The dynamic embedding approach we propose for handling nonstationary series 

substantially improves our ability to forecast when the underlying dynamics are 

changing.  In addition to allowing us to forecast in the presence of nonstationarity, we 

suspect that the dynamic embedding approach could be of use in anticipating ecological 

regime shifts.  Specifically, we might compare the fit of models with and without 

temporal drift to test for the presence of nonstationarity.   

Our approach to nonstationary dynamics assumes that we know little beyond the fact 

that the system is changing.  If we had some information on how the system was 

changing there are several obvious alternatives.  For instance, if the driving variable is 



actually known, we could simply include it as another state in the GP model.  

Alternatively, if the driver is unknown, we could write the dynamics in terms of a single 

extra variable that drifts through time, rather than allowing the shape of the inferred map 

to change.  That is, we could write                          with              .  It 

may be that a model with a low-dimensional drift term is more efficient than the infinite-

dimensional drift model we have proposed.   

All of the models we have proposed and all of the simulations we have done have 
ignored observation uncertainty.  This assumption makes it possible to analytically 

marginalize over the unknown  , simplifying the problem down to estimating a handful 
of hyperparameters.  With observation errors, this is no longer the case and we must 
resort to either MCMC (Hastings, 1970; Ming-Hui et al., 2000) or Laplace approximation 
(Tierney and Kadane, 1986).  Accounting for observation errors in GP-based dynamical 
models is certainly possible (Thorson et al., 2014), though at the cost of dramatically 
increased computation.  It is also worth noting that in simulations using Sugihara’s S-
map for forecasting, the results are robust to modest levels of measurement error 
(Perretti et al., 2013; and Deyle et al., 2013).  That said, extending the models shown 
here to state-space settings is an important area for future development. 
 
Nonlinear dynamics and chaos have been clearly demonstrated in multiple experimental 

systems (Ellner and Turchin, 1993; Desharnais et al., 2001; Becks and Arndt, 2008), 

and are likely to be the norm in ecology.  Similarly, structural uncertainty is a pervasive 

problem in ecological modeling and ecosystem management.  The tools we propose 

here do not offer a solution to the problem of structural uncertainty.  Rather, they give us 

a way to avoid the problem entirely - when the goal is to generate short term predictions 

and make robust management decisions.  We anticipate that these methods will be of 

value in conservation and management whenever the ‘true’ dynamics of the system are 

unknown.   
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Appendix 1. Prior specification 

We set      such that the expected number of local extrema is 1, in keeping with our 

intuition that the function we are attempting to estimate should not be too ‘wiggly.’  The 

scale factor                    has been included so that the   ’s are 

dimensionless and the range of               is      .  We can then make use of the 

fact that the expected number of zero crossings of a stationary GP on the unit interval 

(Sacks and Ylvisaker, 1966) is given by                                           .  

Combining this with the fact that the derivative of a GP is also a GP with covariance 

function given by            (see Rasmussen and Williams, 2006), the expected 

number of turns (local extrema) on the unit interval is given by                     

               .    

Using correlation function                with            , we have         

     so that                               .  Since we want                     

          , we set our prior for   so that this is true.   

We used weakly informative priors for the remaining parameters,    and   .  Specifically, 

we set                                         such that the prior mean for each 

parameter is         .  Although this may seem restrictive, this prior only constrains the 

total variance in the predicted population size, e.g,     , to be less than twice the 

observed variance in          .      

 

Appendix 2.  Updating 

For all of the cases described in the main text, updating uses a two-stage approach. In 

the first stage, the parameters and hyperparameters {    
   , etc.} are estimated from 

the marginal posterior obtained by integrating out f .  Sampling for these parameters is 

done using a Metropolis Hasting algorithm.  In the second stage, we make use of the 

fact that the posterior distribution for f given the parameters is also a GP  

                        

where the conditional mean and covariance functions, evaluated at some new states 

     are given by 

                                
    

          
                                          

              

where   is the collection of delay vectors for the observed series           and   is the 

vector of observed next states          .   



Using this updating scheme, we can produce 1-step ahead forecasts directly by setting 

         .  If we are interested in  -step forecasts for    , two approaches are 

possible.  The first approach is to construct a distribution of future states by simply 

iterating the estimated f over several steps.  A second approach, is to estimate a new 

function, say    that produces an  -step forecast directly, by replace the vector 

            with                 .  Here we adopt the latter approach as it is 

considerably faster and less prone to spurious error inflation when   is not large and 

time series used to fit the GP is reasonably long. 

 

Appendix 3.  Hierarchical models with time-varying dynamics.  

The hierarchical and nonstationary models can be readily combined, allowing the 

population-specific   s and the across-population mean   to drift through time.  As in the 

previous two cases there is an underlying additive representation for f, which is now 

           and            with the addition of a random walk component for the 

deviations from the mean, i.e.               . The intial conditions are all represented 

by GP’s:            and               and discount factors are used to parameterize 

the temporal variations:             and             .  The discount factor   controls 

the rate at which   changes through time, while the new discount factor   controls the 

rate at which specific populations drift independently.  As in the hierarchical case, we 

set the point-wise variance for    to     and the pointwise variance in     to        .  

The two previous models are obtained as special cases of this model by setting 

      for the hierarchical case or setting     to obtain independent time varying 

models for each population.   

For building intuition, it is again useful to think about the correlation between two   s at a 

single state   and time  . Across populations, we have 

                    
       

                   
 

If the drift rates are equal,    , then the correlation remains   for all  . If the series do 

not drift independently (   ) , then the correlation goes to 1 and if     then the 

correlation goes to 0.  

The correlation through time for a single population is given by 

                    
 

                    
 



The introduction of   as an additional GP was just a notational convenience. Since 

          , we can eliminate it from the model.  Doing so, the hierarchical model with 

time varying dynamics is given by 

                                       

                                                  

                         

                         

                    

                 (6) 
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